Reduction of 3-chlorobenzoate, 3-bromobenzoate, and benzoate to corresponding alcohols by Desulfomicrobium escambiense, isolated from a 3-chlorobenzoate-dechlorinating coculture.
نویسندگان
چکیده
An anaerobic bacterial coculture which dechlorinated 3-chlorobenzoate (3CB) to benzoate was obtained by single-colony isolation from an anaerobic bacterial consortium which completely degraded 3CB in defined medium. Of 29 additional halogenated aromatic compounds tested, the coculture removed the meta halogen from 2,3- and 2,5-dichlorobenzoate, 3-bromobenzoate (3BB), 5-chlorovanillate (5CV), and 3-chloro-4-hydroxybenzoate. Dechlorinating activity in the coculture required the presence of pyruvate. 5CV was also O-demethoxylated. The coculture contained two cell types: a short, straight gram-negative rod and a long, thin, curved gram-positive rod. The short rod, Desulfomicrobium escambiense, was recently isolated and identified as a new sulfate-reducing bacterial species (B. R. Sharak Genthner, S. D. Friedman, and R. Devereux, Int. J. Syst. Bacteriol. 47:889-892, 1997; B. R. Sharak Genthner, G. Mundfrom, and R. Devereux, Arch. Microbiol. 161:215-219, 1994). D. escambiense did not dehalogenate any of the compounds dehalogenated by the coculture, nor dit it O-demethoxylate 5CV or vanillate. However, D. escambiense reduced 3CB, EBB, and benzoate to their respective benzyl alcohols. Reduction to alcohols required the presence of pyruvate, which was transformed to acetate, lactate, and succinate in the presence of absence of 3CB, 3BB, or benzoate. Alcohol formation did not occur in pyruvate-sulfate medium. Under these conditions, sulfate was preferentially reduced. Other electron donors that supported the growth of D. escambiense during sulfate reduction did not support benzoate reduction to benzyl alcohol.
منابع مشابه
Description of strain 3CB-1, a genomovar of Thauera aromatica, capable of degrading 3-chlorobenzoate coupled to nitrate reduction.
A Gram-negative bacterium, strain 3CB-1, isolated from a 3-chlorobenzoate enrichment culture inoculated with a sediment sample is capable of degrading various aromatic compounds and halogenated derivatives with nitrate as electron acceptor. Compounds capable of serving as carbon and energy sources include 3-chlorobenzoate, 3-bromobenzoate, 2-fluorobenzoate, 4-fluorobenzoate, benzoate, 3-hydroxy...
متن کاملDegradation of 4-Chlorobenzoic Acid by Arthrobacter sp.
A mixed population, enriched and established in a defined medium, from a sewage sludge inoculum was capable of complete mineralization of 4-chlorobenzoate. An organism, identified as Arthrobacter sp., was isolated from the consortium and shown to be capable of utilizing 4-chlorobenzoate as the sole carbon and energy source in pure culture. This organism (strain TM-1), dehalogenated 4-chlorobenz...
متن کاملCharacterization of hybrid toluate and benzoate dioxygenases.
Toluate dioxygenase of Pseudomonas putida mt-2 (TADO(mt2)) and benzoate dioxygenase of Acinetobacter calcoaceticus ADP1 (BADO(ADP1)) catalyze the 1,2-dihydroxylation of different ranges of benzoates. The catalytic component of these enzymes is an oxygenase consisting of two subunits. To investigate the structural determinants of substrate specificity in these ring-hydroxylating dioxygenases, hy...
متن کاملCharacterization of bacterial consortia capable of degrading 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions.
4-Chlorobenzoate and 4-bromobenzoate were readily degraded in denitrifying enrichment cultures established with river sediment, estuarine sediment or agricultural soil as inoculum. Stable denitrifying consortia were obtained and maintained by serial dilution and repeated feeding of substrates. Microbial community analyses were performed to characterize the 4-chlorobenzoate and 4-bromobenzoate d...
متن کاملRelationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei.
Resting-cell suspensions of Desulfomonile tiedjei consumed H2 with 3-chloro-, 3-bromo-, and 3-iodobenzoate as electron acceptors with rates of 0.50, 0.44, and 0.04 mumol h-1 mg-1, respectively. However, benzoate and 3-fluorobenzoate were not metabolized by this bacterium. In addition, H2 uptake was at least fourfold faster when sulfate, sulfite, or thiosulfate was available as the electron acce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 63 12 شماره
صفحات -
تاریخ انتشار 1997